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EXECUTIVE SUMMARY

This report is addressed to analysts with some background in probability,
statistics, and stochastic networks. The literature on activity networks has
identified shortcomings of deterministic methods such as the Program Evaluation
and Review Technique (PERT). Much of the estimation error of PERT is due to
the failure to adequately treat subnetworks of parallel activities. Statistics
such as mean, standard deviation, and quantiles of completion time of these

* subnetworks can be accurately calculated by the methods of this report. There-
* fore, the errors in these statistics produced by deterministic methods can be

evaluated for specific examples. However, in the author's opinion, in most
instances deterministic networking methods should be abandoned in favor of
accurate and comprehensive stochastic techniques such as the Venture Evaluation

I and Review Technique (VERT).
The numerical procedures developed here have considerable use apart from

* application to activity networks. The problem of finding descriptive statis-
*tics for the maximum of a set of positive continuous random variables is found

in the areas of analysis of engineering tolerances and of reliability and main-

tainabil ity.

Motivated by networking problems, various parametric analyses are performed.
Goals are to determine the sensitivity of the subject statistics to network
parameters and to draw pertinent inferences for activity networks. Some para-
meters of interest are the number of random variables (RV's) in the set, the
relative size of the mean value of each of the RV's in the set, and the func-

* tional form of and shape parameters for the probability distributions of these
I RV's. Most of the examples use probability distributions having the domain

zero to infinity. To meet the objection that the domain is always finite, an
analysis is made of the effect of truncating the above distributions. A briefI
analysis is also done on the effect of network logic.
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MEMORANDUM REPORT

SUBJECT: Statistics for the Maximum of Several Positive Random Variables with
Application to Networking

1. Reference:

References are designated by bracketed numbers and are included in the foot-

notes. The references are also listed.

2. Background

Deterninistic* networking methods for estimating the time to complete a

multi-activity project have existed for more than two decades. Methods of this

sort such as PERT and CPM, while useful in some respects, can produce large

errors in estimates of the mean value and upper quantiles of the probability

distribution of project completion time. The error is due principally to the

insistence that a deterministic critical path pass thru that activity, in a set

of parallel activities, which has the largest mean completion time**. The

errors of deterministic networking methods were identified! very early. For

example, see Grubbs (1962)[1].

• As opposed to Monte-Carlo methods.

•** The deterministic approach replaces the random activity times by their

mean values to find a critical path thru the network. Using the PERT

assumption, the variance of the project completion time is just the sum of

the activity variances along the critical path. To estimate quantiles of

the distribution of project completion time, PERT makes the additional

assumption that the distribution of this random variable is Normal.

[1] Grubbs, F.-° "Attempts to Validate Certain PERT Statistics or 'Picking on

PERT'," Opils. Res., Vol. 10, pp. 912 - 915, 1962.
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An analytic approximation was devised by Clark (1961)[2] to calculate the

mean and standard deviation of project completion time. The method is based

on Normally-distributed parallel activity times. These times are permitted to

be correlated, if activities share a common node. Subsequent critiques of PERT,

such as MacCrimmon and Ryavec (1964)[3] and Greer (1983)[4], attempted to quan-

tify the approximate magnitude and sign of the estimation errors of completion

time statistics. By necessity, these papers use quite simple examples, from

which their inferences are drawn. Unfortunately, there is a great diversity

in network structure, and no typical* network can be identified.

3. In at least one class of network problems, there are multiple -- typically,

2 to 20 -- independent, parallel activities throughout very large networks.

This type of network [5] has been used by Department of Army organizations to

plan for the reactivation of inactive ammunition production facilities. Moti-
vation for the work reported here followed discussion with one of the authors
of [5] (Moeller) about the estimation errors associated with deterministic

[2] Clark, C.E, "The Greatest of a Finite Set of Random Variables," Opns. Res.,

Vol. 9, No. 2, pp. 145 - 162, March - April 1961. -

[3] MacCrimmon, K.R. and Ryavec, C.A. "An Analytical Study of the PERT

Assumptions,"Opns. Res., Vol. 12, No. 1, pp. 16 - 37, January - February

1964.

[4] Greer, W.R. Jr. "Why Doesn't PERT Work?," Resource Mgmt. Journal, pp. 27 -

31, Summer 1983.

* There are, of course, classes of problems which yield similar networks.

However, exceptions are manifest to generalizations such as "activity net-

wouks have few independent parallel activities."

[5] Matheiss, T.H., Moeller, G. and Kilar, J. "Improving Industrial Readiness

with Venture Evaluation and Review Technique (VERT)," Interfaces, Vol. 12,
No. 1, pp. 21 -26, February 1982.
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networking methods applied to this type of problem. It appears that the defects

of deterministic networking methods, tho adequately reported*, have not been

appreciated by all. The beginning of the present effort was an attempt to

quantify the error of PERT completion time for a subnetwork of multiple paral-

lel activities.

4. An approach to all stochastic networks which avoids the restrictive assump-

tions of PERT is called VERT, for Venture Evaluation and Review Technique. A

recent expository paper by Moeller and Digman (1981)[6] describes the modeling

technique and illustrates this with an example of planning in the electric

power industry. The textbook on VERT [7] provides greater detail.

5. Objectives and Scope

The class of problem posed by parallel subnetworks of activities of random

duration is the following. Given a set of k positive, continuous random vari-

ables, each having a possibly unique distribution, what are the values of

statistics asso(iated with the largest member of this set? The statistics of

interest are the mean, standard deviation, and quantiles of the distribution

of the largest value.** Objectives of this report are: (a) to develop a

general procedure for obtaining this mean and standard deviation and (b) to

derive some analytic results suitable for assessing the computational error of

In fact some authors ([3] and [4]) have advocated patching up PERT via

analytic corrections.

[61 Moeller, G.L. and Digman, L.A. "Operations Planning with VERT," Opns. Res.,

Vol 29, No. 4, pp. 676 - 697, July - August 1981.

[7] Lee, S.M., Digman, L.A., and Moeller, G.L. Network Analysis for Management

Decisions, Kluwer-Nijhoff Pub., Hingham, MA, c. 1981.

** A method for obtaining these statistics for this problem has greater applic-

ability than just to activity networks. Other applications lie in the '

areas of tolerance stackup (where parallel elements exist) and in reliability

and maintainability analysis.

3

. . ... ., , . . ,



4

the numerical method. Additionally, considering the original problem context,

certain numerical generalizations are desired which can be applied to activity

networks.

6. Method

Prior to discussing methods, some problem nomenclature will be useful. The

probability density function (p.d.f.) and its integral the cumulative distribu-

tion function (c.d.f.) for each of the random variables (RV's) in the set

{xil < i < k} are denoted, respectively, by f.(x) and Fi(x). These are the

primary inputs or problem ingredients. It is assumed that the mean and variance
of x i -- E[x i] and V[xij -- are readily available. The random variable of
interest is denoted by zk, where

z k = max (x, x2  ... x ... , xk), 0 < xi<

The p.d.f and c.d.f. of z k are denoted by gk(z) and Gk(z). Given that an expres-

sion for gk(z) can be derived, one can obtain an analytic expression for the

j th origin moment a.(k) by
a k r zJ Qk(Z)dz,0<ja.(k) = o

From this result the mean and variance of zk are, immediately,

E[zk] ai(k)

VLk a2(k) - ac(K) ,

with standard deviation of zk equal to V[[Zk]. An expression for gk(z) is

easily obtained for certain types of Fi(x) distributions. Analytic results for

examples of this sort are obtained by the above method. These results are

deriwvad in Annex A. Also included in this annex are probability arguments

leadiin to general procedures for calculating E[zk] and V[zk], which can be

easil" i-inc ierLed in a computer program. From a pragmatic point of view, it

is i;;=t.rial whether numerical results are obtained by evaluating a closed-

forr,; exPo:ssion or by following another numerical procedure, oroviding the
lattor is not com:utationally too expensive and yields a sufficiently small

*

*



* numerical error. A computer program was developed to implement the procedure

* derived in Annex A. The program listing is displayed in Annex B. The method

presented here has the important practical advantage of being free of restric- -

*tions on the form of F.( x). For simplicity, numerical examples of this method

were calculated for some familiar two-parameter distributions -- gammia and

Weibull distributions. A parametric analysis is conducted which systematically

examines the effects of the number (k) of RV's in the set and of the parameters

* of these probability distributions.

* 7. As indicated, the primary emphasis in this report is on the maximum of a

set of k random variables. Ordinarily, the logic of an activity network cor-

responds to this problem. Passage to other activities downstream of a set of

parallel activities is conditional upon completing all of the parallel activi-

ties. Occasionally, network logic permits passage when only k of n activities

* are complete. If the probability distribution of all parallel activities is

the same, the latter problem reverts to a problem in order statistics. Guenther

* (1977)[9] presents an easily applied numerical technique for evaluating the

c.df. of the kth ordered (in algebraic magnitude) statistic in a set of n.

The method of [9] is exploited here for this special case. Details are pre-

senited at the end of Annex A.

8. Numerical Results

Following the derivation of equations in Annex A some numerical examples
Iare considered. The random variables (xi) for all examples are scaled so as

to facilitate comparison between examples. The parameters in F.(x) are

selected so as to make the largest over i of E[x.], 1 < i < k, equal to unity.
1

n fact, one may as well order the x.i in order of decreasing mean value. This
scaling does not reduce the generality of our approach. (One can always con-

vert between units.) It does, however, permit one to compare the value of

[9] Guenther, W.C. "An Easy Method for Obtaining Percentage Points of Order

Statist-Ics," Technometrics, Vol. 19, No. 3, pp. 319 -321, August 1977.



E[zk] with the PERT-estimated value, which is always unity. Altho the method

for calculating the statistics of zk does not require the location parameter

of Fi(x) to be zero, all numerical results presented here assume that xi is

bounded from below by zero. It is recognized that this assumption may be

unrealistic for certain applications.

9. The first examples treat the case in which Fi(x) is exponential with rate

parameter Xi. An analytic solution exists for this case. This permits cal-

culation of the computational errors in E[zk] and V[zk] associated with the

numerical method. Results for the special case in which X is unity for all

i are shown in Table E.I. The c.d.f.'s of zk, with k as a parameter, are

shown in Figure E.1 for this case. Plots of Gk(z) for all the examples have

been made on Normal probability paper. Advantages to plotting in this manner

are: (a) departures from a straight line (Normality) are evident and (b) the

values of the c.d.f. in each tail can be accurately plotted and read. Results

for other examples involving exponential Fi(x) are shown in Tables E.2 and

E.3. Figure E.2 illustrates the behavior of Gk(z) as k increases, for the case
in which X= 1 and Xi = 1.2Xi I i > 1. In this case each RV added to the

set has a mean value that is 1/1.2 of its predecessor. Convergence of quantiles

in the upper tail of Gk(Z) is evident. Additional observations concerning

this and other examples are found in Annex A.

10. Accuracy of the numerical method is displayed for two examples in Tables

E.4, E.5, and E.6. Accuracy is a function of the step size used in numerical

integration and of the method of quadrature used. Two quadrature schemes are

employed for comparison: rectangular and Simpson's rule [11]. The latter is

preferred on the basis of computational efficiency, altho both schemes are

easily implemented and yield satisfactory accuracy. Methods for obtaining

E[zk] and V[zk] based on numerical evaulation of the integral

* [11] Bennett, A.A., Milne, W.E. and Bateman, H. Numerical Integration of

Differential Equations, Dover Pub., New York, NY, c. 1956.

6



0 z gk(z)dz, j : 1, 2

are not recommended due to their relatively poor accuracy visa vis the method

of Annex A.

11. Some parametric analyses were performed using the number (k) of RV's in
the set as a parameter and with Fi(x) having two functional forms -- gamma and

Weibull. The effect of k on Gk(z) for a Weibull distribution with shape para-

meter 2 is shown in Figure E.3. The shape parameter (8) of these distributions

influences both the degree of dispersion and the skewness. With the constraint

that E[xi] = 1, 1 < i < k, the shape parameter of the Fi(x) distribution was

changed systematically to determine the effect on E[zk]. Results for the

gamma distribution are shown in Table E.7. Comparable results for Fi(x)

Weibull are shown in Table E.8. The effects upon the coefficients of varia-

tion and of skewness of xi due to changes in shape (8) are different in the

gamma and Weibull distributions. These differential effects are illustrated

in Table E.9. Even when the two values of 8 are chosen to give the same coef-

ficient of variation of xi , one should expect different values of E[zk] in

the gamma and Weibull cases. In fact, such differences are observed. Stated

differently, a difference exists between E[zk] when Fi(x) is gamma versus
k1

E[zk] when Fi(x) is Weibull with the same coefficient of variation. However,

this difference is quite small* whenever the skewness of Fi(x) > 1 and

k < 6. Under these conditions the form of the c.d.f. of x. is not important

when calculating E[zk].

12. Another numerical study, applicable to activity networks, deals with

* A difference in these cases is about ±0.02 or less for E[zk] % 1.7 and

SD z 0.4. To detect a difference of this magnitude via stochastic simu-

lation would require a Monte-Carlo sample greater than 500 for the standard

error of the estimate to be less than about 0.02.

77



the upper limit on the range of xi. The previous types of distributions con-

sidered for Fi(x) were defined on the semi-infinite domain (0, -). This was

done for analytic convenience. However, in practice some mechanism will act

to truncate x. from above. One may ask what the effect of truncating Fi(x)

at some large quantile is on the mean and standard deviation of zk. It is

* clear that distributions of xi which exhibit large positive skewness would be

* .most sensitive to truncation for our problem. Therefore, an exponential

c.d.f. was used. This distribution was truncated at the 0.99 and at the 0.999

quantile. The value of Xi was adjusted so that E[x i] is the same (=1) for all

cases. Results of these calculations are displayed in Table E.1O. One obser-

vation of interest is that the mean of z k is much less affected by truncation

than the standard deviation of zk. Truncation at even the 0.99 quantile does

not have a remarkable effect on E[zk]. For example, E[z 6] is 2.45 without

truncation; is 2.43 when truncation is at the 0.999 quantile; and is 2.36 when

truncation occurs at the 0.99 quantile. However, the corresponding standard
deviations of z 6 are, respectively, 1.22, 1.15, 0.97.

13. Conclusions

The deterministic approach to activity networks, which replaces random

attivity times by their mean values, can lead to large underestimates of the

mean completion time for subnetworks of parallel activities. For specific

subnetworks of parallel activities, the methods of this report can be used to

estimate the PERT error in the mean, standard deviation, and quantile of the

completion time. This approach is preferable to numerical generalizations,

since activity networks are quite diverse. The PERT assumption regarding the

Normality of the completion-time probability distribution is grossly wrong for

(sub)networks having multiple parallel random activities, each of which is

positively skewed. In those instances where network structure and logic are

quite complex, it seems practical to use a stochastic networking technique

such as VERT rather than attempt to "patchup" PERT.

14. The method derived to treat the problem of networks of parallel random

ar:tivitis is considerably more general than this application may suggest. The

B I
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method derived and used in this report is quite accurate for calculating the

means, standard deviations, and quantiles of the maximum of a set of k posi-

tive, continuous random variables. In applications involving activity networks,

the computational errors of the method are completely negligible.

15. Certain quantitative generalities have been induced from specific numeri-

cal examples. It is noted that when the mean of one of the exponential RV's

(xi) in a set of k is greater than the others, the standard deviation of zk

* (= max(xi)) will eventually decrease with increasing k. An implication for
1

* activity networks is the following: As the number of parallel activities

increases, the 3tandard deviation of the completion time will actually decrease

beyond a certain point. This contradicts one of the PERT assumptions. For

positively skewed distributions of xi -- such as gamma and Weibull Fi(x), the

mean of zk for k < 6 is not very sensitive to the form of F.(x) provided the

distribution parameters are chosen to yield the same first two statistical

moments. This fact makes consideration of the precise form of the distribution

of xi somewhat academic for parallel activity networks.

16. Consider progressively adding RV's (xi) to the set; i.e., increasing k,

in such a manner that each xi has a smaller mean than its predecessor. In this

case the upper tail of the c.d.f. of the maximum, Gk(z), is insensitive to k

above a certain point. For example, for E[x i] = 1.2 E[xi+1], no appreciable

change occurs in the 0.9 quantile for k > 3. The implication of this result

for activity networks is that adding more activities to a parallel network may

not change the low-risk forecasted completion time.

i. The use of semi-infinite c.d.f.'s for xi instead of truncated c.d.f.'s

with the same mean is justified if: (a) the focus of interest is on E[zk]

and (b) the truncation point exceeds the 0.99 quantile. In some cases network

logic may require that only k of n (k < n) parallel activities need to be com-

pleted before passing this point in the network. Even tho n may be large, viz.

> 6, the difference between mean completion times for the two cases n of n

versus k of n can be remarkable. This fact suggests that particular attention

be paid to characterizing network logic for parallel activities. Implementation

of diverse logical forms is facilitated by using stochastic networking methods

such as Venture Evaluation and Review Technique (VERT).

9
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ANNEX A

Mean and Standard Deviation for

the Maximum of Several Positive
Continuous Random Variables

This annex derives formulas for calculating the statistical moments of the

largest random variable in a set of k positive random variables (xi, 1 i < k).

Application is made to an example in which xi , 1 < i < k, are exponential random

variables (RV's) from distributions having different rate parameters. This

example is sufficiently tractable to allow a closed-form solution for the

-* statistical moments. These exact values are used to evaluate the accuracy of

numerical procedures, which are suitable for a more general case. Specific

examples are displayed, and some general inferences are made from them. The

examples are chosen for their applicability to networks of parallel activities

* which must all be completed for passage thru the network. It is noted that

this type of problem is a special case of the problem in which passage thru

the network requires the completion of k of n, k < n, activities.

To start, consider two positive continuous random variables x1 and x2

having probability density functions (pod.f.'s) fl(x) and f2 (x), respectively.

" The associated cumulative distribution functions (c.d.f.'s) are denoted Fl(x)

and F2(x), with a domain of x: (0 < x )

Define

y = max (x1.x2 ) (1)

* with p.d.f. f (y) and codof. F (y). The one's complement of F. is denoted

F . = 1- Fi , i = 1,2 (2)

*Invoking the definition of y in (1) and probability arguments, one can state

that

fy(y) F1(y)f2 (y) + F2(y)fl(y) (3a)
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Suppressing functional notation, this expression can be written as

dFy = d(FIF 2 )  (3b)

or

F = F1 F2  . (3c)

Using (2) with (3a),

fy = fl + f2 - (Flf 2 + F2f1 ) • (4)

The last expression can be used to find a simple recursive equation for the

expectation of y:

E[y] = yF (y)dy (5)
y

From (4) and (5),

E[y] : o yfl(y)dy + yf2 (y)dy - o YFI(Y)f2(y)dy - F2(Y)fI(y)dy (6a)

Recalling the definitions of fl and f1 2
E[y] = E[x I] + E[x 2] - yF1f2dy - y F2f1dy (6b)

U;ing integration by parts,

- yFlf2 dy YF2 f1dy + f' F2dy E[xl]

Combining this result with (6b) produces

E[y] = E[x 2] +o F1 F2dY . (7a)

One can obtain an alternative expression by using symmetry arguments and by

exchanging indices, or by the following argument. From (7a) using complements

of F and F2,

E[y] = E[x 21 + fo (F - F2 + FIF 2 )dy

o r

E[y] E[x 1 ] +o F1F2dy (7b)

The second moment of y with respect to the origin,

E[y 2] . y 2 fy dy

A-2



can be obtained from (4): 2
E[y]- E[x] + E[x I - f' yTf dy ff yFfdy (8)0

This expression is analogous to (6b) for the first statistical moment. Inte-

grating the first integral in (8) by parts and combining terms gives

E[y2] = E[x2] + 2Jo yF2-F dy (9a)

or

E[y2J - E[x ] + 2fo yF1T2 dy (9b)

Example

For a specific example of the above theory, suppose that

FI(x) = 1 - e-Nix (E.1)

and

F2(x) = 1- e 2x  (E.2)

From (7a), the expected value of y is
+1 F ey( -2YE[y]: X21 + o-l~ - id

00
E~y]: XI +AI - (X1 + X 2 ) (3)

We will return to this example for extension later.

The relation between distribution functions in (3) for the maximum of two

RV's can be generalized to the max of k, as follows. Define a positive RV xk

with pdf. and c.d.f. denoted by fk and Fk. Also, define the RV zk:k = m a x 1x x 2 , x i  X k ) ,
i ma ( I9 ' - 9x ., ., k (10)

with pod.f. and c.d.fo denoted by gk and Gk, respectively.
Note that J

0

Zk+1 : max(zk, Xk+ I) (11)
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Then, (3) yields

gk+ l(z) Gk(z)fk+l(z) + Fk+ 1(z)gk(z) (12a)

and

Gk+l(z) = Gk(z)Fk+1(z) (12b)

or
G k+1lF (z) (12c)

Gk1l(Z) = "j=1" °

Notice that both the p.dofo and cod.f. of zk can be obtained recursively.

Further, there is no requirement that all the F. be identical, as in the case

with order statistics.

In (12) Gk plays the role of F1 and Fk+ 1 plays the role of F2 in (3a). A

similar exchange of variables in (7a) produces the following relation for mean

values of zk

E[zk+l] = E[Xk+l] + o~(y)Fk+1 (y)dy (13a)

If F has a simpler form than Gk, the following analog of (7b) may be
k+1V

preferred

E[zk+l] = E[zk] + o Gk(y)-Fk+l(y)dy (13b)

A generalization of (9b) for the second origin moment is

E[z +12 E[z I + 2 yG)k+I(y)dy' k > 1. (14)
Ek~ E~k 0 ()kl(yd.k>1

The variance of z k+1 can be obtained from the first and second origin moments

via:

*2 2 2
V[z k+] E[z +l] - (E[zk+l]) (15)

Note that (13), (14), and (15) provide the basis of a numerical procedure for

calculating the mean and variance of zk recursively. Computational experience

with this procedure indicates that somewhat better accuracy is obtained than
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is possible, at the same integration step size*, with a straightforward inte-

gration of G via

E[zk] = ]oGk(Y)dy (16)

and

E[z]= yo (y)dy . (17)

These general results can be used to extend the example, started following

(9). Suppose that a random variable x3 also has an exponential distribution:

f3 (x) = A eX3x

and

= eX3X (E.4)

From (12), with G1 =F 1 ,

g2(z) = (I - e- 1Z)X e-A2Z + (1 - e.X2Z)X e-Xiz

or

12(z) 2e  + X2 z - ( 1 + X2 )e
"(

1+-A)z (E.5)

Whence,

G2(z) = 1 - eAiz - e-X2Z + e-(1+X2)Z (E.6)

Since E[y] in (E.3) is the same as E[z 2 ], in this notation, (13b) gives

E[z 3] =X 1 + X-1  (X + X2 )' + fo e- Y(I- e - X y - e X 2Y +

e" )Y)dy

* The same type of quadrature formula is also assumed. For computational

efficiency Simpson's rule [11, p. 31] is recommended.

[11] Bennett, A.A., Milne, W=Eo, and Bateman, H. Numerical Integration of

Differential Equations, Dover Pub., New York, NY, c. 1956.
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or

E[z 3] 1 Ail + X21 + l (3 1 + A2) - (1 + 3 - (A2 + A3) +

(A1 + A2 + A3)-1 (E.7)

The p.d.f, of z3, g3(z), is obtained from (12) using (E.4, E.5, Eo6).

g3(z) = (1 - e " lz - eA2Z + e(AI+ X2)Z)X 3A 3 Z + (1 - e 3Z

(Xle-1z + X2e-A2Z - (A1 + X2 )e(l1+X2 )Z)

Simplifying,

g3(z) = 1
e- Az + ,2e

'X 2Z + A3e-A3Z _ (X1 + X2 )e'(XI+A2)Z

(X1 + X3)e (X+X3)z - ( 2 + 3)e-(x2+X) + (X1 + X2 + X3)

e-(Xl+X 2+X3)ze

or
3 3 3 ex X +3~

93 (z) J = X exp (Xjz) jexp- ( + k)Z +

X Aj exp- X Aj)z . (E.8)

The expression for G3(z) is simplified if one uses the following notational

convention. Let E(r,z) denote

e- rz

Then, it is seen that each of the terms in (E.8) is an exponential density
so that

G3 (z) = ji E(j, z) - j- ks z)+E( i 1 z) (E.9)

Notice that when the x. random variables in (10) are all exponential, the
density k is composed of sums of exponential densities. This is seen in
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(E.5) and (E.8). In the recursive relation for gk equation (12), one notes

for the specific example being considered that
k-A z k-A z-k+lZ -k+1z

gk+1(z) = gk(z) + Gk(z)Xk+le - e gk(z) (E,1O)

The last two terms in (E.1O) are seen to contribute additional exponential

density terms to those of gk(z). Specifically for k = 3, using (E.9),

g4(z) = g3(z) + A4e4zj3E(AXj,z) - X -X4z 3 E3 E(Xj + Xk,Z) +94z 3z 4 j=l 4 j ^4e  kijk9

A4e' ZE(jiAXjz) - e- . .X exp - (Xjz) +

e k j j=3(Aj + k) exp- (Aj + Xk)Z - e- X AO exp -

3X k )z .(E.11)

After some manipulation this expression simplifies to

(X.ep-(Az E (X +Ak) exp -(A.+
94 3) 4- jk +

kj ji i4(Ai + X. + Xk) exp - (Xi + " + Ak)z "

jXj exp- (j4Xj)z (E.12)

Using the notation of equation (E.9), the cod.f. of z can be written

G4(z) = j E(j9z) - kj j E(Xj + X kz) + j;i i: 'E(i+
4•E ( .7: l .z ) .( E .1 3 )

Since Gk(z) is a sum of exponential probabilities, where the typical term

* E(r,z) has an expected value of r- , one can immediately write.. E~z 4 X 4-1 4 1
EEl j k j_ (Xj + Xk) + kj j i + -1 + k) -

1 jk j 1 k k "

ll .)- (E.14)

The expected values of z2, z3, and of z4 -- in, respectively, (E.3), (E.7),

and (E.14) -- in this example all conform to a common formulation: Combine
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the rate parameters associated with the k exponential random variables by

summing sets of terms, with sets alternating in sign. The first set is just

the sum of all k inverse rates. The second set is negative. This second -

set is the sum of the inverses of the sum of unique pairs of parameters. The

third set -- if it exists -- is the sum of the inverses of the sum of unique

triples; i.e., combinations of k values of X taken three at a time. The

last set consists of a single term -- the inverse of the single combination

of k values of A i taken k at a time. With this formulation the expectation

of z is immediately written as

E[z AX- . 1 (i + X) -1 + 5j A 5(X + XA + k-1

1; J j(X + A. Xk + Xl)-1 + (iA 1 X (E.15)

The c.d.f. of z is, by induction,5i

G5 (z) = i E(Xi'z) - j;i i = E(Xi + A.'z) + kj j~i iE(A i + A. + Ak,Z)-

dkk ~ 1 E(A1 + AX + Xk+Al,z) + E( iiz) .(E.16)

l kj j~i i=1 Ei j k =-

The second statistical moment of Gk(Z) with respect 
to the origin, E[z ],

. cn be obtained directly from Gk(z) by using the fact that the second origink
moment of E(r,z) is 2r . Then from E[z k] and E[zk], the variance of zk is

*written, from (15), as

22V[zk] = E[zk] = (E[zk]) 2

*. Thus, from (E.5),

E 2= -2 +1 2 - 2(XI + A 2 )-2 
(E.17)

From (E.3) and (E.17) and using (15),

V[z 2] = X12 + X22 - 3(X1 + X2 )
2  . (E.18)

From (E.9),

E[z ] 2: X- 2 k (X. + A + 2(j= X (E.19)
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From (E.13),

E[z) 4 = i 24A 2 2.. +A.A. 2 ''kj j~ J4(A + X' + Xk) -

2( iA X 2 0 (E20)

And, from (E.16),

E2z2] = 2- (Z5I + A.)" + 2 E (A+5 1=1 i j - J ji i=1 ki~ i( +)

2 5 j; i 5(X A. X+ + A(j5 2l;k Jj 1~ -=1 i + k + 1  (~ 1
2  

.(E.21)

A great simplification of the sample results occurs when each of the RlI~s
x. has the same exponential distribution. Consider the case in which all

A.=1, for instance. Then,

E~x.] =1

* and

E[zk k(_i)j +1 k) (E.22)

*For the second origin moment in this special case,

-[z] 2~k.)+()~ . (E. 23)

* Nu~merical values of these moments are found in Table E.1.
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TABLE E.1

STATISTICAL MOMENTS OF THE

DISTRIBUTION OF zk, WHERE

zk = max(x1, x2, .o., xi, oo., xk)

WITH x. A STANDARDIZED EXPONENTIAL R.V,

k E[zk] E[zk] Std Dev zk Coef Var z

1 1.0000 2.0000 1.0000 1.0000

2 1.5000 3.5000 1.1180 0.7453

* 3 1.8333 4.7222 1.1667 0.6364

4 2.0833 5.7639 1.1932 0.5727

5 2.2833 6.6772 1.2098 0.5298

6 2.4500 7.4938 1.2212 0.4984

7 2.5929 8.2350 1.2296 0.4724

One observation of interest from Table E.1 is that the coefficient of variation

of zk decreases as k increases. In this example the mean increases more rapidly

with k than does the standard deviation.

To demonstrate the effect of differences in the rate parameters X

(i = 1, ..., k), consider the following numerical example. Let X = 1, and

for all succeeding values of Ai. let X. = 1.2i . The values of E~zk] and

E[zk] must be calculated via the formulas preceding (Eo22). Results are

tabulated in fable E.2.
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TABLE E.2

STATISTICAL MOMENTS OF THE DISTRIBTION OF zk, WHERE

z = maxx, ... , 6- x)
k  ax(x, x2, .. , i  k

WITH x. EXPONENTIALLY DISTRIBUTED

WITH RATE PARAMETER Xi: X = 1; Xi = 1.2i i > 1

k E[xk] Std Dev zk Coef Var zk

1 1.0000 1.0000 1.0000

2 1.3788 1.0366 0.7518

3 1.5593 1.0182 0.6530

4 1.6514 0.9948 0.6024

5 1.6992 0.9763 0.5746

6 1.7237 0.9637 0.5591

7 1.7359 0.9560 0.5507

Note that E[zk] appears to be near an asymptote for k 7. In this instance the

coefficient of variation diminishes even more rapidly with k than it does in the

case in which all X. =1. .

In contrast to the above examples, consider a case in which all the random

variables (x.) in the set, save one, have the same mean. The exceptional RV

has a greater mean. A numerical example of this case is shown in Table E.3.

A-11

. .. . . . . ...... . . . . .. . -. -. . . .



TABLE E.3

STATISTICAL MOMENTS OF THE MAXIMUM OF A SET

OF EXPONENTIAL RANDOM VARIABLES xi, 1 < i < k,

WHERE E[x i] = 1 AND E[xi] = 0.79, i > 1

k E[zk] Std Dev zk Coef Var zk kZ k

1 1.0000 1.0000 1.0000

2 1.3487 1.0197 0.7561

3 1.5855 1.0256 0.6469

4 1.7653 1.0277 0.5822

5 1.9105 1.0285 0.5383

6 2.0324 1.0286 0.5061

7 2.1375 1.0284 0.4811

The results in Table E.3 resemble those in Table E.I. In both cases the

value of E~zk] increases with k, whereas the standard deviation of Zk increases

more slowly with k. Thus, the coefficient of variation decreases with k, but

not so rapidly as in Table E.2. It is noted that when the mean of one RV in

the set is greater than the constant mean of all others, the variance of zk

will eventually decrease with k beyond a certain point. In the example above,

with E[x i] = 0.79, i > 1, the maximum variance occurs at k = 6.

Computational Errors

The results in Tables E.1, E.2, and E.3 are numerically exact to the number

of significant digits displayed. These results were obtained from the closed-

form solution equations using double-precision arithmetic.

When more general results are wanted, it is convenient to use a numerical
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procedure applicable to all distributions of positive, continuous RV's. The

procedure displayed in Annex B uses equation (12) to obtain the c.dof. of Zk'

The mean and variance of zk are obtained using (13), (14), and (15). Because

the procedure involves numerical integration at each recursive step, a compu-

tational error is incurred. With rectangular integration an integration step

size of 0.002 is judged a satisfactory compromise between accuracy and speed.

With Simpson's rule, the step size can be relaxed to 0.005, yielding essential-

ly five digit accuracy in E[zk] for k < 7o Computational errors with the first

order procedure (step size 0.002) are displayed in Tables E.4, E.5, and E.6.

These results are regarded as representative of the errors to be encountered in

network applications.

TABLE E.4

ACCURACY OF A NUMERICAL METHOD FOR OBTAINING THE

MEAN AND STD DEVIATION OF THE MAXIMUM OF A SET OF RV'S

Case A: All RV's (xi) are exponentially

distributed with rate parameter Xi = 1, 1 < i < k.

No. RV's Exact Values Numerical Approx.

k E[Zk] Std Dev zk E[zk] Std Dev zk

2 1.5000 1.1180 1.5000 1.1176

3 1.8333 1.1667 1.8332 1.1660

4 2.0833 1.1932 2.0832 1.1921

5 2.2833 1.2098 2.2832 1.2085

6 2.4500 1.2212 2A4498 1.2196
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TABLE E.5

ACCURACY OF A NUMERICAL METHOD FOR OBTAINING THE

MEAN AND STO DEVIATION OF THE MAXIMUM OF A SET OF RV'S

Case B: All RV's (x.) are exponentially

distributed with rate parameters Xi:

1,= X= 1.2Xi 1 , i > 1.

Exact Values Numerical Approx.
No. RV's______________________________

k

E[zk] Std Dev zk E[zk] Std Dev zk

1 1.0000 1.0000 1.0000 1.0000

2 1.3788 1.0366 1,3788 1.0366

3 1.5593 1.0182 1.5593 1.0181

4 1.6514 0.9948 1.6514 0.9948

5 1.6992 0.9763 1.6992 0.9762

6 1.7237 0.9637 17237 0.9636
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TABLE E.6 I
TYPICAL ERRORS OF THE NUMERICAL PROCEDURE FOR CALCULATING

MEANS AND STANDARD DEVIATIONS OF THE MAXIMUM OF A SET

OF POSITIVE RANDOM VARIABLES

Errors for Case A Errors for Case B
No. RV's___

k

E[zk] Std Dev zk E[zk] Std Dev zk

2 0.0000 -0.0004 0.0000 -0o0000

3 -0.0001 -0.0007 0.0000 -0.0001

4 -0o0001 -0.0011 000000 0.0000

5 -0.0001 -O0O13 0.0000 -0.0001

6 -0.0002 -0,0016 0.0000 -0.0001

It is noted that the computational errors of the mean value and standard -

deviation in these examples have a consistent sign, indicating underestimation.

Since the numerical procedure used here is first-order, the errors in Table E.6

are proportional to integration step size.

Exact distribution functions of zk, (2 < k < 6), are shown in Figure E.1

for the case in which xi, 1 < i < k, are exponential with unity mean. It is

noted that substantial positive skewness persists with increasing k up to

k = 6, In Figure E.2 is displayed the c~dof. of zk for the case in which

X = I and Xi = 1.2X i_1 2 < i < k. Because each additional (ordered) RV has

a smaller mean value than its predecessors, the upper tail of the distribution

of zk is approaching an asymptotic form as k grows indefinitely. From Fiqure

E.2 it is apparent why the standard deviation of k decreases with increasing k.

This example applies to those networks having parallel activities in which a
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few activities have much greater mean completion times than the other activi-

ties. In this instance the mean value of the completion time for this portion

of the network is insensitive to the addition of activities beyond a certain 0

point.

Parametric Analyses

In a fully general situation each of the x. random variables in the set
1may have a unique functional form. In such a setting few numerical generali-

zations about the distribution of max in set (zk) can be made. However, one

can be more restrictive with respect to assumptions with some beneficial con-

sequences. Assume that the functional form of all the xi is the same, for

example, gamma or Weibull. Also assume that the mean value of all the RV's

is the same. With these restrictions some interesting parametric analyses can

be performed. One analysis of interest is the effect of distribution shape on

the mean value of zk. In the case of the gamma c.dof., shape is affected by

only one parameter -- -- in the function:

F(x) = J X(Xt) e dt/F(a) (18)
12 0

As increases, with fixed mean, the distribution becomes less variable and

less positively skewed. In this case the coefficient of variation is 1/VF.

One would expect that E[zk] would decrease with increasing a, since less prob-

ability density is associated with large values of x i As seen in Table E.7,

this expectation is correct. Since our general numerical method was used here,

results are presented to only four significant digits. Integration step size

was chosen to yield four digits accuracy. This was checked against exact

results for the exponential case (a = 1). A generalization from Table E,7 may

be of interest. Over the range of gamma shape parameter shown, there is an

approximate geometric decrease in E[zk] - 1 with increasing a. The rate of

decrease is observed to be greater for larger values of k. Clearly, in the

case of zero variance as 6 approaches infinity, E[zk] approaches unity for all
k.
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In the case where F(x) is Weibull, the single parameter 8 affects shape:

F(x) = 1 - exp[-(Xx)8] . (19)

Results for this case are shown in Table E.8. With increasing a the coeffi-

cient of variation uniformly decreases toward zero, as in the case where x is

gamma. However, with increasing 8 in the Weibull case, the coefficient of

skewness decreases thru positive values, becoming negative at a = 3.6. As -

continues to increase, the coefficient of skewness asymptotically approaches

-1.14. This behavior (among others) distinguishes the Weibull from the gamma

c.d.fo Coefficients of variation and of skewness for the gamma and Weibull

distributions are tabulated versus shape parameter in Table E.9. For large

values of , the Weibull is not really comparable with the gamma distribution

for reasons given above. However, for values of a in which the Weibull is

positively skewed and has the same coefficient of variation as a given gamma

distribution, certain results are quite similar. For a = 1 both distributions

are exponential and yield identical values of E[zk]. Consider the non-trivial

case in which the coefficient of variation is 1/2: a(gamma) = 4 and a(Weibull) =

2.102. In this case the form of the distribution has little effect upon

E[Zk ]. Results are nearly the same -- within ±0.02 -- for 2 < k < 6.

The c.d.f. of zk is displayed in Figure E.3 for several values of k, given
that Fi(x) is Weibull with shape parameter of 2. For this particular distri-

bution the mean of xi is located at the 54% percentile. Altho the skewness of

this choice of Fi(x) is rather small (0.63), the Gk(z) functions are distinctly

non-gaussian. (Note that the plots are made on Normal probability paper.) It

is noted in passing that the assumption that zk is Normal is generally grossly

wrong.
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TABLE E.7

PARAMETRIC ANALYSIS FOR THE MEAN VALUE OF THE MAXIMUM

OF A SET OF GAMMA RV'S WITH SHAPE* AS A PARAMETER

E[xi] = 1, 1 < i < k

E[zk] for Gamma Shape Parameter:
No. RV's

k
1 2 3 4 5

2 1.500 1.375 1.312 1.273 1.246

3 1.833 1.606 1.498 1.433 1.387

4 2.083 1.774 1.631 1.544 1.486

5 2.283 1.904 1.733 1.630 1.561

6 2.450 2.012 1.816 1.700 1.622

7 2.593 2.102 1.886 1.759 1.673

Ix*Parameter a: F(x) : X(Xt)-le-tdt/r(B)

0
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TABLE E.8

PARAMETRIC ANALYSIS FOR THE MEAN VALUE OF THE MAXIMUM

OF A SET OF WEIBULL RV'S WITH SHAPE* AS A PARAMETER

E[xi] = 1, 1 < i < k

o.RsE[zk] for Weibull Shape Parameter:
" No. RV's

k
1 2 3 4 5

2 1.500 1.293 1.206 1.159 1.129

3 1.833 1.456 1.312 1.237 1.191

4 2.083 1.567 1.382 1.287 1.230

5 2.283 1.650 1.432 1.323 1.258

6 2.450 1.716 1.472 1.351 1.279

7 2.593 1.771 1.504 1.374 1.297

*Parameter : F(x) = 1 - exp[-(Xx)
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TABLE E.9A

COEFFICIENT OF VARIATION VERSUS SHAPE PARAMETER

FOR GAMMA AND WEIBULL RANDOM VARIABLES

CV for Shape Parameter:
Distribution

Type
2 3 4 5

Gamma 1.0000 0.7071 0.5774 0.5000 0.4472

Weibull 1.0000 0.5227 0.3634 0.2805 0.2291

TABLE E.9B

COEFFICIENT OF SKEWNESS VERSUS SHAPE PARAMETER

FOR GAMMA AND WEIBULL RANDOM VARIABLES

YD for Shape Parameter:
Distribution

Type
1 2 3 4 5

Gamma 2.0000 1.4142 1.1547 1.0000 0.8944

Weibull 2.0000 0.6311 0.1681 -0.0869 -0.2540
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Truncation Effects

It was stated that the intended application of the above analysis is to

networking problems where activity times are, ultimately, bounded from above.

Thus, the reader may be tempted to challenge the applicability of distributions

of x which yield positive but unbounded values. All of the above methods hold

for bounded distributions. Only the applications emphasis so far has been on i

unlimited distributions. This situation can be redressed by examining trun-

cated versions of the distributions previously considered. Suppose that the

RV x is defined on the finite domain: 0 < x _ xu. If the non-truncated cod.f.

of x is denoted by F(B,X ,x), the truncated form is given by

F'(B x)= FQ3,A',x)/F(B3,X',Xu) ,

for 0 < x < Xu If the untruncated mean value is unity and one wishes the same

value of the mean of the truncated RV, the rate parameter, X, must be adjusted

to ' so that

fu 'F'(3,A',x)dx = I

0

This adjustment to preserve the mean facilitates a comparison between results

for truncated and non-truncated c.d.f.'s. In Annex B we display the listing of

tho computer program which implements truncation for the 2-parameter Weibull

family. In the case where the shape parameter B = 1, the exponential distribu-

tion is realized. The mean values of the maximum of a set of truncated expon-

ential RV's were calculated for several values of xu. The upper truncation

point, x u , was chosen to yield convenient values of F(a,X',x u) such as 0.990

and 0.999, etc. Results are shown in Table El1O. These may be compared with

the untruncated results in Table E.I. It is clear that truncation of the xi

values has a much greater effect on the standard deviation of zk than on the

mean of zk. Specifically, when the upper 1% of the distribution is truncated,

the standard deviation of z7 is reduced to 78% of its untruncated value, whereas

the mean of z7 is reduced to 96% of its. As might be expected, very little

difference exists between truncated and untruncated results when only 0.1% of

the distribution is truncated.
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TABLE E.1O

EFFECT OF TRUNCATION OF THE EXPONENTIAL DISTRIBUTION

OF xi ON THE MEAN AND STD DEV OF zk = MAX(x, ...,Xk)

GIVEN E[x i] = 1, 1 < i < k

Upper Trunc. Point*: 4.8298 6.9559

k E[zk] SD[zk] E[zk] SD[zk]

1 1.000 0.928 1.000 0.983

2 1.486 0.998 1.498 1.088

3 1.802 1.007 1.828 1.126

4 2.033 1.000 2.074 1.143

5 2.215 0.987 2.271 1.151

6 2.363 0.972 2.434 1.154

7 2.488 0.956 2.573 1.155

*The upper truncation point (xt) is the value of x such that the c.d.f. is

F(x) [I - exp(-Xx)]/qt, 0 < x < xt

wi h

qt = 1 - exp(-Xxt)

The values of qt for the above truncation points are, respectively, 0.990 and

0.999. Associated values of X are, respectively, 0.95348 and 0.99309.
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Probability Distribution of the kth Largest of n

The primary focus in this annex is on the statistics of the largest posi-

tive RV in a set of k RV's, each of which has a unique c.d.f. When all of the

RV's in the set are from the same distribution, the problem addressed here is

just that of the largest order statistic. Order statistics pertain to the kth

ordered RV in an identically distributed set of n. An extensive literature

exists relative to order statistics. Gumbel (1958)[8], for example, uses this

theory to develop the statistics of extremes. As pointed out by Guenther

(1977)[9], the c.d.f. of the kth order statistic from a set of n RV's with

common distribution function F(x) is given by

Gk n(Z) = IF(z)(k,n - k + 1) , (20)

where I (a,b) is the beta distribution of x with parameters a and b. The betax
distribution is expressed as

Ix (ab) _ 2 I Jx ua-1 (1 - u)b-ldu (21a)
B(a,b) o

with

B(a,b) = r(a) P(b) (21b)
r(a + b)

Guenther indicates that it is computationally convenient to obtain I (a,b) fromx
an equivalent form of Fisher's F-distribution. A numerical method for evaluat-

ing the F-distribution is given on p. 944 of Abramowitz and Stegun (1966)[10].

[8] Gumbel, E.J. Statistics of Extremes, Columbia Univ. Press, New York,

c. 1958.

[9] Guenther, W.C. "An Easy Method for Obtaining Percentage Points of Order

Statistics," Technometrics, Vol 19, No. 3, pp. 319 - 321, August 1977.

[10' Abramowitz, M. and Stegun, I Handbook of Mathematical Functions, AMS 55,

Nat, Bureau of Standards, August 1966.
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Denote the upper tail probability of the F-distribution with argument y and

with integer degrees of freedom parameters v1 and v2 by Q(y,,1,'2). Then, the

following relationship can be used relating I x(a,b) to Q(y,vl, 2):

Ix (a,b) = ( a(1 - x) , 2b,2a) . (22)
bx

Annex B includes a listing of the computer program TEST.K which implements

equations (20), (21), and (22) to calculate the distribution of the kth order

statistic for a set of n generally-distributed continuous random variables.

The distribution function F(x) is calculated in a user-supplied function FUN.CDF.

The form of this routine illustrated in Annex B calculates a (optionally) trun-

cated Weibull distribution. The mean and standard deviation of the order

statistics are evaluated using the method shown in equations (16) and (17) and

employing Simpson's rule. Despite the ease of implementation, little applic-

ability of order statistics is foreseen to networking. This is due to the fact

that parallel activities seldom have the same c.d.f. When they (approximately)

do, it is quite important to specify whether passage thru the network requires

the completion of all of the activities or of a subset. To illustrate this

point, consider Figure E.4. A comparison is made between G6 ,7(z) and G7, 7(z)
when F(x) is a standardized exponential distribution. It is seen that a remark-

able difference exists between mean values of the completion times -- in a net-

work context -- of two situations: (a) 6 activities of 7 must be complete for

passage versus (b) all 7 activities must be complete for passage. This illu-

strates a suprisingly high sensitivity of project completion time to network

logic.
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ANNEX B

Computer Source Programs -

Two MAIN computer programs are presented in this annex. The first (MAXG)

can be used to calculate the mean, standard deviation, and probability dis-

tribution function of the largest of k positive, continuous random variables

xi, 1 < i < k, each having its own c.d.fo The c.dof. of xi is calculated by

the function FUN.CDF which accepts as arguments the shape and rate parameters

and the value of xi. As shown, FUN.CDF produces probability values for

(optionally) truncated 2-parameter Weibull distributions. Comment code is also

provided for calculating the gamma distribution. All supporting routines and

functions are supplied in this listing.

The second MAIN program (TEST.K) calculates the distribution function, mean,

and standard deviation for the order statistics of a general c.d.f. This

general c.d.f. is calculated in the user-supplied function FUN.CDF. As shown

FUN.CDF provides values for truncated Weibull distributions, just as this func-

tion does for MAXG. The fact that FUN.CDF is identical for these programs is,

of course, not necessary. All utility routines are provided for TEST.K. Com-

ment statements in these routines explain their purpose and define input and

output arguments.

These programs are written in SIMSCRIPT 2.5 for the PRIME 750 minicomputer.

However, the code does not employ features unique to this computer. Cross

reference lists are included with program statements to identify variable type,

to tabulate the locations of each variable in the programs, and to facilitate

the conversion of programs to another language. Both driver programs are inter-

active. Program input is read from the terminal and output is displayed at the

terminal. No external files are used. Since the output may be lengthy, it is

recomend-d that a COMO file be established to display or print it.
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For convenience and without loss of generality, the random variables x. are
1

- considered scaled in dimension so that the largest mean of the xi is unity.

Inputs to MAXG and TEST.K are provided in response to prompting messages sent

to the terminal. Thus, MAXG requires as input the max number of random variables

in the set, an indication of whether these are defined on a finite or semi-

infinite domain (If finite, the upper truncation point must be specified.), the

shape parameters of the distribution of the xi, and the ratio of the mean xi to

the mean of xI. At the user's option the values of Gk(z) are printed out at

intervals sufficient to permit a visually smooth point-to-point plot. Whether

or not Gk(z) is printed, the program provides the mean value and standard devia-

tion of z2, z3, etc. up to the maximum set size specified.

In the program TEST.K, required inputs are: (a) the cumulative probability

associated with the upper truncation point -- if truncation of F(x) is chosen --

(b) the number (n) of identically-distributed RV's in the set, (c) the index

(k) of the order statistic wanted, (d) the shape parameter of F(x), and (e) the

rate parameter of F(x). Output from this program is the distribution, Gk,n(z),

of the selected order statistic as well as its mean and standard deviation.
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